Pattern Classification Based on Conventional Interpretation of MFI
ثبت نشده
چکیده
Our aim is to design a pattern classifier using fuzzy relational calculus (FRC) which was initially proposed by Pedrycz (Pattern Recognition 23 (1/2), 121–146, 1990). In the course of doing so, we first consider a particular interpretation of the multidimensional fuzzy implication (MFI) to represent our knowledge about the training data set. Subsequently, we introduce the notion of a fuzzy pattern vector to represent a population of training patterns in the pattern space and to denote the antecedent part of the said particular interpretation of the MFI. We introduce a new approach to the computation of the derivative of the fuzzy max-function and min-function using the concept of a generalized function. During the construction of the classifier based on FRC, we use fuzzy linguistic statements (or fuzzy membership function to represent the linguistic statement) to represent the values of features (e.g., feature F1 is small and F2 is big) for a population of patterns. Note that the construction of the classifier essentially depends on the estimate of a fuzzy relation < between the input (fuzzy set) and output (fuzzy set) of the classifier. Once the classifier is constructed, the nonfuzzy features of a pattern can be classified. At the time of classification of the nonfuzzy features of the test patterns, we use the concept of fuzzy masking to fuzzify the nonfuzzy feature values of the test patterns. The performance of the proposed scheme is tested on synthetic data. Finally, we use the proposed scheme for the vowel classification problem of an Indian language.
منابع مشابه
Pattern classification using fuzzy relational calculus
Our aim is to design a pattern classifier using fuzzy relational calculus (FRC) which was initially proposed by Pedrycz (1990). In the course of doing so, we first consider a particular interpretation of the multidimensional fuzzy implication (MFI) to represent our knowledge about the training data set. Subsequently, we introduce the notion of a fuzzy pattern vector to represent a population of...
متن کاملImproving Petrophysical Interpretation of Conventional Log by Determination of Real Bed Boundaries
Proper determination of bed boundaries in layered reservoirs is vital for accurate petrophysical interpretation of conventional logs. In the wellbore, logs continuously measure physical properties of reservoir while the properties change stepwise. This continuous representation of logs may lead to ignorance of some high potential reservoir zones. The main reasons for continuous nature of l...
متن کاملMandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملComparative analysis of Luminex-based donor-specific antibody mean fluorescence intensity values with complement-dependent cytotoxicity & flow crossmatch results in live donor renal transplantation
BACKGROUND & OBJECTIVES Antibodies specific to donor human leucocyte antigen (HLA) play a critical role in graft rejection and graft loss. In recent years, techniques for their detection have evolved significantly providing an ever-increasing degree of sensitivity and specificity, from the conventional cell-based assays to the advanced solid-phase system based on the Luminex platform. Consensus...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کامل